跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
GPU-based gray-level co-occurrence matrix for extracting features from magnetic resonance images
Hsin Yi Tsai, Zhang Hanyu,
Che Lun Hung
, Hsian Min Chen
生物醫學資訊研究所
研究成果
:
Conference contribution
›
同行評審
1
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「GPU-based gray-level co-occurrence matrix for extracting features from magnetic resonance images」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Extracting Features
100%
Magnetic Resonance Imaging
100%
Gray-level Co-occurrence
100%
GPU-based
100%
X-ray
50%
Performance Evaluation
50%
Classification Methods
50%
Feature-based
50%
Computer-assisted
50%
GPGPU
50%
Matrix Laboratory (MATLAB)
50%
Parallel Computing
50%
Second-order Statistics
50%
Medical Image
50%
Single Node
50%
Brain Magnetic Resonance Imaging
50%
Unit-based
50%
Texture Analysis
50%
Parallel Methods
50%
Pathology Detection
50%
CUDA C
50%
Textural Feature Extraction
50%
Automated Pathology
50%
Engineering
Graphics Processing Unit
100%
Grey Level
100%
Cooccurrence Matrix
100%
Nodes
33%
Feature Extraction
33%
Classification Method
33%
Medical Image
33%
Brain Image
33%
Texture Analysis
33%
Parallel Method
33%
Pathology Detection
33%
Parallel Computer
33%
Computer Science
Occurrence Matrix
100%
Graphics Processing Unit
100%
Performance Evaluation
33%
second order statistic
33%
Classification Method
33%
Texture Analysis
33%
Parallel Computer
33%
Feature Extraction
33%