Glomerulus Detection on Light Microscopic Images of Renal Pathology with the Faster R-CNN

Ying Chih Lo, Chia Feng Juang*, I. Fang Chung, Shin Ning Guo, Man Ling Huang, Mei Chin Wen, Cheng Jian Lin, Hsueh Yi Lin

*此作品的通信作者

研究成果: Conference contribution同行評審

10 引文 斯高帕斯(Scopus)

摘要

Glomerulus is an important component in human kidney. The appearance of the glomeruli on light microscopic image can provide abundant information for disease diagnosis. Due to the importance of glomeruli on accurate renal disease diagnosis, this paper proposes an automatic method to detect glomeruli in light microscopy images with Periodic Acid Schiff (PAS) or hematoxylin and eosin (H&E) stains at 100x, 200x, or 400x optical magnification. The faster region-based convolutional neural network (R-CNN) is applied to the detection task. The proposed detection approach performs an end-to-end glomerulus detection without any a priori information of the stains and magnifications of the images. The training dataset contains 2,511 images with 3,956 glomeruli. The test dataset contains 482 images with 563 glomeruli. The recall and precision of the test result are 91.54% and 86.50%, respectively, which shows the effectiveness of the proposed detection method.

原文English
主出版物標題Neural Information Processing - 25th International Conference, ICONIP 2018, Proceedings
編輯Seiichi Ozawa, Andrew Chi Sing Leung, Long Cheng
發行者Springer Verlag
頁面369-377
頁數9
ISBN(列印)9783030042387
DOIs
出版狀態Published - 2018
事件25th International Conference on Neural Information Processing, ICONIP 2018 - Siem Reap, Cambodia
持續時間: 13 12月 201816 12月 2018

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
11307 LNCS
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference25th International Conference on Neural Information Processing, ICONIP 2018
國家/地區Cambodia
城市Siem Reap
期間13/12/1816/12/18

指紋

深入研究「Glomerulus Detection on Light Microscopic Images of Renal Pathology with the Faster R-CNN」主題。共同形成了獨特的指紋。

引用此