Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia

Ching Ju Hsiao, Chia Hsiang Chang, Ridwan Babatunde Ibrahim, I. Hsuan Lin, Chun Hung Wang, Won Jing Wang, Jin Wu Tsai*

*此作品的通信作者

研究成果: Article同行評審

16 引文 斯高帕斯(Scopus)

摘要

The primary cilium is a tiny cell protrusion known to transduce key extracellular signals, including those of the sonic hedgehog pathway, which activates Gli transcription factors for various cellular functions. To understand the significance of the Gli2 transcription factor in fibroblasts, we establish a Gli2-knockout NIH3T3 cell line by CRISPR/ Cas9 technology. Surprisingly, NIH3T3 fibroblasts lacking Gli2 expression through gene knockout or RNA interference possess longer primary cilia after stimulation of ciliogenesis by serum starvation. This lengthening of primary cilia is associated with enhanced autophagy-mediated Ofd1 degradation, and can be reversed by pharmacological and genetic inhibition of autophagy. Meanwhile, flow cytometry reveals that Gli2−/− NIH3T3 fibroblasts exhibit a delay in cell cycle re-entry after serum re-stimulation. Ablation of their primary cilia through Kif3a knockdown rescues the delay in cell cycle re-entry. These results suggest that Gli2 plays an unexpected role in cell cycle re-entry through an autophagy-mediated regulation on ciliary length in fibroblasts.

原文English
文章編號jcs221218
期刊Journal of cell science
131
發行號24
DOIs
出版狀態Published - 2018

指紋

深入研究「Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia」主題。共同形成了獨特的指紋。

引用此