Geometrically-induced singularities in functionally graded magneto-electro-elastic wedges

Chiung-Shiann Huang*, C. N. Hu

*此作品的通信作者

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

Asymptotic solutions are proposed for geometrically-induced magneto-electro-elastic (MEE) singularities at the vertex of a rectilinearly polarized wedge that is made of functionally graded magneto-electro-elastic (FGMEE) materials. The material properties are assumed to vary along the thickness of the wedge, and the direction of polarization may not be parallel or perpendicular to the thickness direction. An eigenfunction expansion approach with the power series solution technique and domain decomposition is adopted to establish the asymptotic solutions by directly solving the three-dimensional equations of motion and Maxwell's equations in terms of mechanical displacement components and electric and magnetic potentials. Since the direction of polarization can be arbitrary in space, the in-plane components of displacement, electric and magnetic fields are generally coupled with the out-of-plane components. The solutions are presented here for the first time. The correctness of the proposed solutions is confirmed by comparing the orders of MEE singularities with the published results for wedges under anti-plane deformation and in-plane electric and magnetic fields. The proposed solutions are further employed to investigate the effects of the direction of polarization, vertex angle, boundary conditions and material-property gradient index on the MEE singularities in BaTiO3-CoFe2O4 wedges.

原文English
頁(從 - 到)242-255
頁數14
期刊International Journal of Mechanical Sciences
89
DOIs
出版狀態Published - 1 1月 2014

指紋

深入研究「Geometrically-induced singularities in functionally graded magneto-electro-elastic wedges」主題。共同形成了獨特的指紋。

引用此