Genotype-specific differences in structural features of hepatitis C virus (HCV) p7 membrane protein

Monoj Mon Kalita, Stephen Griffin, James J. Chou, Wolfgang B. Fischer*


研究成果: Article同行評審

23 引文 斯高帕斯(Scopus)


Abstract The 63 amino acid polytopic membrane protein, p7, encoded by hepatitis C virus (HCV) is involved in the modulation of electrochemical gradients across membranes within infected cells. Structural information relating to p7 from multiple genotypes has been generated in silico (e.g. genotype (GT) 1a), as well as obtained from experiments in form of monomeric and hexameric structures (GTs 1b and 5a, respectively). However, sequence diversity and structural differences mean that comparison of their channel gating behaviour has not thus far been simulated. Here, a molecular model of the monomeric GT 1a protein is optimized and assembled into a hexameric bundle for comparison with both the 5a hexamer structure and another hexameric bundle generated using the GT 1b monomer structure. All bundles tend to turn into a compact structure during molecular dynamics (MD) simulations (Gromos96 (ffG45a3)) in hydrated lipid bilayers, as well as when simulated at 'low pH', which may trigger channel opening according to some functional studies. Both GT 1a and 1b channel models are gated via movement of the parallel aligned helices, yet the scenario for the GT 5a protein is more complex, with a short N-terminal helix being involved. However, all bundles display pulsatile dynamics identified by monitoring water dynamics within the pore.

頁(從 - 到)1383-1392
期刊Biochimica et Biophysica Acta - Biomembranes
出版狀態Published - 13 3月 2015


深入研究「Genotype-specific differences in structural features of hepatitis C virus (HCV) p7 membrane protein」主題。共同形成了獨特的指紋。