跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Generalized Likelihood-Ratio Enabled Machine Learning for UE Detection over Grant-free SCMA
Ang Yang Lin,
Po Ning Chen
, Shin Lin Shieh,
Yu Chih Huang
電機工程學系
電信工程研究所
研究成果
:
Conference contribution
›
同行評審
總覽
指紋
指紋
深入研究「Generalized Likelihood-Ratio Enabled Machine Learning for UE Detection over Grant-free SCMA」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
User Equipment
100%
Machine Learning
100%
Generalized Likelihood Ratio Test
100%
Grant-free
100%
Equipment Detection
100%
Data Retrieval
33%
Equipment Status
33%
Resource Element
33%
Rayleigh
16%
Detection Accuracy
16%
Power Control
16%
Control Mechanism
16%
Convolutional Neural Network
16%
High SNR
16%
Channel Gain
16%
Multiple Access Systems
16%
Multiple Access
16%
Network Scheme
16%
Retrieval Practice
16%
Detection Error Probability
16%
Neural Network Structure
16%
Detection Complexity
16%
Soft Output
16%
Status Detection
16%
Correlation Characteristics
16%
Time Correlation
16%
Activeness
16%
Amplitude Distortion
16%
Deep Neural Network Classifier
16%
Mismatch Resolution
16%
Uplink Grant-free
16%
Parallel CNN
16%
Parallel Convolutional Neural Network
16%
Computer Science
Machine Learning
100%
Likelihood Ratio
100%
Convolutional Neural Network
100%
Detection Equipment
100%
Multiple Access
50%
Data Retrieval
50%
Resource Element
50%
Control Mechanism
25%
Detection Accuracy
25%
retrieval performance
25%
Neural Network Architecture
25%
Correlation Characteristic
25%
Amplitude Distortion
25%