Fusarium Wilt Inspection for Phalaenopsis Using Uniform Interval Hyperspectral Band Selection Techniques

Bo Han Chen, Yen Chieh Ouyang, Mang Ou-Yang, Horng Yuh Guo, Tsang Sen Liu, Hsian Min Chen, Chao Cheng Wu, Chia Hsien Wen, Chgein I. Chang, Min Shao Shih

研究成果: Conference contribution同行評審

3 引文 斯高帕斯(Scopus)

摘要

In this paper, we propose a method to inspect the quality of Phalaenopsis by using hyperspectral imaging techniques. Phalaenopsis is easy to get infected with Fusarium wilt. We use the k-means clustering method to find out that the reflection spectrum of Phalaenopsis stem changes. The methods of the Spectral Angle Mapper (SAM) and Constrained Energy Minimization (CEM) are then used to find the area of the infected area. The Harsanyi, Farrand and Chang (HFC) methods and virtual dimensions (VD) are used to estimate the amount of spectrum required for band selection (BS). Band priority (BP) is used to calculate the priority of each band, and band de-correlation (BD) will remove band data with high correlation with each other. Then use the support vector machine (SVM) to detect Phalaenopsis wilt. The detection accuracy of VNIR and SWIR is 0.81 and 0.86, respectively, with band selection.

原文English
主出版物標題2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面2831-2834
頁數4
ISBN(電子)9781728163741
DOIs
出版狀態Published - 26 9月 2020
事件2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, 美國
持續時間: 26 9月 20202 10月 2020

出版系列

名字International Geoscience and Remote Sensing Symposium (IGARSS)

Conference

Conference2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020
國家/地區美國
城市Virtual, Waikoloa
期間26/09/202/10/20

指紋

深入研究「Fusarium Wilt Inspection for Phalaenopsis Using Uniform Interval Hyperspectral Band Selection Techniques」主題。共同形成了獨特的指紋。

引用此