Fully Integrated Voltage Doubler with Dual-Mode Three-Dimensional Load Regulation for On-Chip Photovoltaic-Powered Applications

Oi Ying Wong, Po-Hung Chen*

*此作品的通信作者

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

This paper presents a compact and fully integrated switched-capacitor voltage doubler for voltage boosting in photovoltaic-powered implantable devices. Gate-voltage boosting, nonoverlapping, and interleaving techniques are adopted to enhance the driving capability of the voltage doubler at low supply voltage with high efficiency. A dual-mode three-dimensional (3-D) digital control circuit is proposed to regulate the output voltage under the load current variation. The 3-D control on the number of active converter cells, operation frequency, and on-resistance enable fine output voltage regulation over a wide load current range without extensive device segmentation, thereby reducing the routing complexity and the associated parasitic losses. Other advantages are that the switching loss can be proportionally scaled with the load current for high power efficiency and the periodic charge transfer to the output can keep small for small voltage ripple. Pulse-skipping modulation is employed to allow the converter to operate under ultra-light load. The proposed voltage doubler is designed and implemented using 0.18 μm-CMOS process. The measurement results demonstrate that the proposed converter can generate a voltage of 0.9 V from an input of 0.6 V, with a power efficiency of more than 60% within the output current range of 30-440 μA. The peak efficiency is 73% and the active area is 0.33 mm2. These measurement results suggest that the proposed voltage doubler is suitable for voltage boosting at low voltage under the limited availability of power and area.

原文English
文章編號8355771
頁(從 - 到)1481-1491
頁數11
期刊IEEE Transactions on Power Electronics
34
發行號2
DOIs
出版狀態Published - 1 2月 2019

指紋

深入研究「Fully Integrated Voltage Doubler with Dual-Mode Three-Dimensional Load Regulation for On-Chip Photovoltaic-Powered Applications」主題。共同形成了獨特的指紋。

引用此