跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
FPCIM: A Fully-Parallel Robust ReRAM CIM Processor for Edge AI Devices
Yan Cheng Guo, Wei Tien Lin,
Tuo Hung Hou
,
Tian Sheuan Chang
電子研究所
前瞻半導體研究所
電機工程學系
神經調控醫療電子系統研究中心
研究成果
:
Conference contribution
›
同行評審
總覽
指紋
指紋
深入研究「FPCIM: A Fully-Parallel Robust ReRAM CIM Processor for Edge AI Devices」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Resistive Random Access Memory (ReRAM)
100%
Fully Parallel
100%
Edge AI
100%
In-memory
100%
Deep Learning
33%
Non-ideal Effects
33%
Parallel Computing
33%
Computing Design
33%
Popular
16%
Energy Efficiency
16%
Convolution Neural Network
16%
Parallelization
16%
Proposed Design
16%
High Energy Efficiency
16%
Model Accuracy
16%
Low Quality Data
16%
Instruction Sets
16%
Massive Parallelism
16%
Accuracy Loss
16%
Data Movement
16%
2D Convolution
16%
Computer Science
Energy Efficiency
100%
Parallelism
100%
Edge AI
100%
Deep Learning Method
100%
Convolutional Neural Network
50%
Model Accuracy
50%
Memory Design
50%
Parallel Computation
50%
Parallel Computer
50%
Engineering
Parallelism
100%
Artificial Intelligence
100%
Deep Learning Method
100%
Energy Efficiency
50%
Energy Conservation
50%
High Energy Efficiency
50%
Parallel Computer
50%
Convolutional Neural Network
50%
Chemical Engineering
Artificial Intelligence
100%
Deep Learning Method
100%
Neural Network
50%