Formation of trichloronitromethane and dichloroacetonitrile in natural waters: Precursor characterization, kinetics and interpretation

Yi-Hsueh Chuang, Hsin Hsin Tung*

*此作品的通信作者

研究成果: Article同行評審

32 引文 斯高帕斯(Scopus)

摘要

During the chloramination of natural waters, both chloramines and dissolved organic nitrogen (DON) can serve as nitrogen sources for the formation of trichloronitromethane (TCNM) and dichloroacetonitrile (DCAN). The present study investigated the formation kinetics and precursor characteristics of TCNM and DCAN. 15N-Isotopic monochloramination of the organic fractions produced both 15N- and 14N-DCAN and TCNM. Nitrogenous disinfection byproduct (N-DBP) formation, in which the nitrogen precursor originated from DON (14N-DCAN and 14N-TCNM), followed a second-order reaction kinetics (k=3.2×10-5 to 9.4×10-5μM-1h-1). The formation of N-DBP where the nitrogen atoms originated from chloramines (e.g. 15N-DCAN and 15N-TCNM) correlated linearly with chloramine exposure. The discrepancy in formation kinetics results in that the 14N-DCAN concentrations were two to ten times higher than 15N-DCAN in the beginning of the reaction (<12h). Possible rate equations are proposed in this study. The results of a model compound study support the results of the chloramination of natural waters. In addition, 4-hydroxybenzaldehyde, an oxidative product commonly found during chlorination/chloramination of natural organic matters, gave a 10-fold greater yield of DCAN than that produced from tyrosine; 4-hydroxybenzaldehyde is thus an important precursor in DCAN formation by chloramine incorporation during the chloramination of natural waters.

原文English
頁(從 - 到)218-226
頁數9
期刊Journal of Hazardous Materials
283
DOIs
出版狀態Published - 1 1月 2015

指紋

深入研究「Formation of trichloronitromethane and dichloroacetonitrile in natural waters: Precursor characterization, kinetics and interpretation」主題。共同形成了獨特的指紋。

引用此