Formation of Cu2O/titanate/titania heterojunctions from hydrothermally induced dual phase transitions

Manchal Chaudhary, Sue-Min Chang*, Ruey An Doong, Hsin Mu Tsai


研究成果: Article同行評審

11 引文 斯高帕斯(Scopus)


A microwave-assisted hydrothermal method has been developed as an efficient approach to readily induce phase transition of titanate assemblies in conjunction with decoration of Cu2O clusters on the surface. The influence of Cu2+ ions on the hydrothermally induced structural evolution was examined, and the roles of heterojunctions in the resulting composites in charge separation for improved photocatalytic activity were clarified. Hierarchical titanate assemblies with high adsorption capacity for Cu2+ ions (95.7 mg/g) were prepared from a low alkaline condition. Microwave-assisted hydrothermal treatment was then used to transform the adsorbents into Cu2O/titanate/titania photocatalysts in 20 min via inducing titanate-to-titania and Cu2+-to-Cu2O dual transitions. While tubular architecture was maintained in the composites, the Cu2O clusters highly dispersed on the surface. Adsorbed Cu2+ ions have been found to retard the titanate-to-titania transformation locally, thus leading to Cu2O/titanate/titania heterojunctions. The multiheterojunctions enabled the composites to exhibit 1.7-5.1 times higher activity than the commercial product P25 (kobs, 0.06 min-1) for decomposition of bisphenol A due to charge separation. EPR results clearly reveal that the type II band alignment effectively drove electrons and holes to migrate toward the titania and the Cu2O moieties, respectively, and the titanate moiety positioning in between prevented back recombination. The optimal Cu2O loading to the highest activity (kobs, 0.306 min-1) was 3.7 wt %. Over the optimal amount, the lower reduction potential in the valence band of the Cu2O clusters compensated for the positive effect from charge separation, thus causing the activity to decline in turn.

頁(從 - 到)21381-21389
期刊Journal of Physical Chemistry C
出版狀態Published - 29 9月 2016


深入研究「Formation of Cu2O/titanate/titania heterojunctions from hydrothermally induced dual phase transitions」主題。共同形成了獨特的指紋。