跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Few-Shot and Continual Learning with Attentive Independent Mechanisms
Eugene Lee, Cheng Han Huang,
Chen Yi Lee
電子研究所
神經調控醫療電子系統研究中心
研究成果
:
Conference contribution
›
同行評審
16
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Few-Shot and Continual Learning with Attentive Independent Mechanisms」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Deep Neural Network
100%
Continual Learning
100%
Few-shot Learning
100%
High-order
66%
New Task
66%
Training Distribution
66%
Conceptual Learning
66%
Unseen
33%
Feature Extraction
33%
High Similarity
33%
Deep Learning Framework
33%
Publicly Available
33%
CIFAR-100
33%
Fast Adaptation
33%
Catastrophic Forgetting
33%
Mixture-of-experts
33%
Omniglot
33%
CIFAR
33%
Test Distribution
33%
Modular Components
33%
Computer Science
Deep Neural Network
100%
Few-Shot Learning
66%
Learning Framework
33%
Independent Concept
33%
Deep Learning Method
33%
Feature Extraction
33%
Chemical Engineering
Deep Neural Network
100%
Deep Learning Method
33%
Neuroscience
Neural Network
100%
Psychology
Neural Network
100%