Ferroelectric Tunnel Thin-Film Transistor for Synaptic Applications

William Cheng Yu Ma*, Chun Jung Su, Kuo Hsing Kao, Ta Chun Cho, Jing Qiang Guo, Cheng Jun Wu, Po Ying Wu, Jia Yuan Hung


研究成果: Article同行評審


In this work, a ferroelectric tunnel thin-film transistor (FeT-TFT) with polycrystalline-silicon (poly-Si) channel and ferroelectric HfZrOx gate dielectric is demonstrated with analog memory characteristics for the application of synaptic devices. The FeT-TFT exhibits a much lower conduction current of ∼0.032 times in transfer characteristics and maximum conductance (Gd) of ∼ 0.14 to 0.2 times in potentiation and depression operation than the FeTFT due to FeT-TFT’s carrier transport mechanism: interband tunneling. This work employed pulse widths of 75, 150, and 300 ns to modulate Gd, and it was found that using a pulse width of 75 ns could achieve low asymmetry ∼ 1 and high Gd ratio ∼ 20.63 under the consideration of operation speed. When the pulse time is increased, the potentiation and depression voltages can be significantly decreased to maintain the low asymmetry, but the Gd ratio is also reduced. In addition, the endurance characteristic of poly-Si FeT-TFT is found to be strongly related to the degradation effect of subthreshold swing due to the dynamic stress effect in the endurance measurement. This result reveals that the reliability of ferroelectric devices is not only owing to the degradation of the remanent polarization.

期刊ECS Journal of Solid State Science and Technology
出版狀態Published - 5月 2023


深入研究「Ferroelectric Tunnel Thin-Film Transistor for Synaptic Applications」主題。共同形成了獨特的指紋。