TY - JOUR
T1 - Fabrication of WO3 electrochromic devices using electro-exploding wire techniques and spray coating
AU - Chang, Chi Ming
AU - Chiang, Ya Chen
AU - Cheng, Ming Hsiang
AU - Lin, Shiuan-Huei
AU - Jian, Wen-Bin
AU - Chen, Jiun-Tai
AU - Cheng, Yen-Ju
AU - Ma, Yuan Ron
AU - Tsukagoshi, Kazuhito
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/5
Y1 - 2021/5
N2 - Electrochromic devices (ECDs) play an important role in smart window applications for blocking heat from sunlight. Tungsten trioxide (WO3) is one of the best candidates for making electrochromic films. Current manufacturing processes are, however, costly, have long processing time, and often use non-eco-friendly precursors. Here an alternative facile method integrating electro-exploding wire and spray coating techniques is demonstrated for applications in large size ECDs. The electro-exploding wire technique is used to synthesize WO3 nanomaterials (NMs) in deionized water. The varied size distribution of WO3 NMs is achieved by changing the exploding voltage. The NMs are characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The exploding voltage of 36 V is selected to generate WO3 NMs in a wide size distribution for making porous WO3 films. Subsequently, spray coating is used to disperse WO3 NM suspension on the ITO/glass substrate to form an electrochromic film. The films are characterized by scanning electron microscopy (SEM) and by cycle voltammetry, chronoamperometry, and chronocoulometry measurements in dilute sulfuric acid. The WO3 NM films prepared at a high exploding voltage and a high substrate temperature present a higher electrochemical stability. Considering porosity and electrochemical stability, WO3 NMs exploded at 36 V are used to prepare WO3 films on substrates heated at 300 °C. The electrochromic WO3 film can be operated for over 1000 cycles. We demonstrate an ECD with an area of 15 × 15 cm2 and propose a way to make large size ECDs with low cost and eco-friendly processes.
AB - Electrochromic devices (ECDs) play an important role in smart window applications for blocking heat from sunlight. Tungsten trioxide (WO3) is one of the best candidates for making electrochromic films. Current manufacturing processes are, however, costly, have long processing time, and often use non-eco-friendly precursors. Here an alternative facile method integrating electro-exploding wire and spray coating techniques is demonstrated for applications in large size ECDs. The electro-exploding wire technique is used to synthesize WO3 nanomaterials (NMs) in deionized water. The varied size distribution of WO3 NMs is achieved by changing the exploding voltage. The NMs are characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The exploding voltage of 36 V is selected to generate WO3 NMs in a wide size distribution for making porous WO3 films. Subsequently, spray coating is used to disperse WO3 NM suspension on the ITO/glass substrate to form an electrochromic film. The films are characterized by scanning electron microscopy (SEM) and by cycle voltammetry, chronoamperometry, and chronocoulometry measurements in dilute sulfuric acid. The WO3 NM films prepared at a high exploding voltage and a high substrate temperature present a higher electrochemical stability. Considering porosity and electrochemical stability, WO3 NMs exploded at 36 V are used to prepare WO3 films on substrates heated at 300 °C. The electrochromic WO3 film can be operated for over 1000 cycles. We demonstrate an ECD with an area of 15 × 15 cm2 and propose a way to make large size ECDs with low cost and eco-friendly processes.
KW - Electro-exploded nanoparticles
KW - Electro-exploding wire techniques
KW - Electrochromic device
KW - Nanostructured materials
KW - Porous electrochromic film
KW - Tungsten trioxide
UR - http://www.scopus.com/inward/record.url?scp=85100140664&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2021.110960
DO - 10.1016/j.solmat.2021.110960
M3 - Article
AN - SCOPUS:85100140664
SN - 0927-0248
VL - 223
SP - 1
EP - 9
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
M1 - 110960
ER -