TY - JOUR
T1 - Exploring the distribution of citrinin biosynthesis related genes among Monascus species
AU - Chen, Yi Pei
AU - Tseng, Ching-Ping
AU - Chien, I. Ling
AU - Wang, Wei Yi
AU - Liaw, Li Ling
AU - Yuan, Gwo Fang
PY - 2008/12/24
Y1 - 2008/12/24
N2 - Citrinin, a hepato-nephrotoxic compound to humans, can be produced by the food fermentation microorganisms Monascus spp. In this study, we investigated the distribution of mycotoxin citrinin biosynthesis genes in 18 Monascus strains. The results show that the acyl-transferase and ketosynthase domains of the pksCT gene encoding citrinin polyketide synthase were found in Monascus purpureus, Monascus kaoliang, and Monascus sanguineus. Furthermore, the ctnA gene, a major activator for citrinin biosynthesis, was found in M. purpureus and M. kaoliang, but was absent in M. sanguineus. The orf3 gene encoding oxygenase, located between pksCT and ctnA, was also present in M. purpureus and M. kaoliang. The pksCT gene was highly conserved in M. purpureus, M. kaoliang, and M. sanguineus, while the ctnA and orf3 genes were shown to be highly homologous in M. purpureus and M. kaoliang. In contrast, the PCR and Southern blot analyses suggest that pksCT, ctnA, and orf3 were absent or significantly different in Monascus pilosus, Monascus ruber, Monascus barkeri, Monascus floridanus, Monascus lunisporas, and Monascus pallens. A citrinin-producing phenotype was detected only in M. purpureus and M. kaoliang using high performance liquid chromatography (HPLC). These results clearly indicate that the highly conserved citrinin gene cluster in M. purpureus and M. kaoliang carry out citrinin biosynthesis. In addition, according to the phylogenetic subgroups established with the β-tubulin gene, the citrinin gene cluster can group the species of Monascus.
AB - Citrinin, a hepato-nephrotoxic compound to humans, can be produced by the food fermentation microorganisms Monascus spp. In this study, we investigated the distribution of mycotoxin citrinin biosynthesis genes in 18 Monascus strains. The results show that the acyl-transferase and ketosynthase domains of the pksCT gene encoding citrinin polyketide synthase were found in Monascus purpureus, Monascus kaoliang, and Monascus sanguineus. Furthermore, the ctnA gene, a major activator for citrinin biosynthesis, was found in M. purpureus and M. kaoliang, but was absent in M. sanguineus. The orf3 gene encoding oxygenase, located between pksCT and ctnA, was also present in M. purpureus and M. kaoliang. The pksCT gene was highly conserved in M. purpureus, M. kaoliang, and M. sanguineus, while the ctnA and orf3 genes were shown to be highly homologous in M. purpureus and M. kaoliang. In contrast, the PCR and Southern blot analyses suggest that pksCT, ctnA, and orf3 were absent or significantly different in Monascus pilosus, Monascus ruber, Monascus barkeri, Monascus floridanus, Monascus lunisporas, and Monascus pallens. A citrinin-producing phenotype was detected only in M. purpureus and M. kaoliang using high performance liquid chromatography (HPLC). These results clearly indicate that the highly conserved citrinin gene cluster in M. purpureus and M. kaoliang carry out citrinin biosynthesis. In addition, according to the phylogenetic subgroups established with the β-tubulin gene, the citrinin gene cluster can group the species of Monascus.
KW - Citrinin
KW - Monascus
KW - Polyketide
KW - β-tubulin
UR - http://www.scopus.com/inward/record.url?scp=58849115055&partnerID=8YFLogxK
U2 - 10.1021/jf802371b
DO - 10.1021/jf802371b
M3 - Article
C2 - 19012408
AN - SCOPUS:58849115055
SN - 0021-8561
VL - 56
SP - 11767
EP - 11772
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 24
ER -