TY - JOUR
T1 - Exosomal components and modulators in colorectal cancer
T2 - Novel diagnosis and prognosis biomarkers
AU - Chang, Yu Chan
AU - Chan, Ming Hsien
AU - Li, Chien Hsiu
AU - Fang, Chih Yeu
AU - Hsiao, Michael
AU - Chen, Chi Long
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8
Y1 - 2021/8
N2 - The relatively high incidence and mortality rates for colorectal carcinoma (CRC) make it a formidable malignant tumor. Comprehensive strategies have been applied to predict patient survival and diagnosis. Various clinical regimens have also been developed to improve the therapeutic outcome. Extracellular vesicles (EVs) are recently proposed cellular structures that can be produced by natural or artificial methods and have been extensively studied. In addition to their innate functions, EVs can be manipulated to be drug carriers and exert many biological functions. The composition of EVs, their intravesicular components, and the surrounding tumor microenvironment are closely related to the development of colorectal cancer. Determining the expression profiles of exocytosis samples and using them as indicators for selecting effective combination therapy is an indispensable direction for EV study and should be regarded as a novel prediction platform in addition to cancer stage, prognosis, and other clinical assessments. In this review, we summarize the function, regulation, and application of EVs in the colon cancer research field. We provide an update on and discuss potential values for clinical applications of EVs. Moreover, we illustrate the specific markers, mediators, and genetic alterations of EVs in colorectal carcinogenesis. Furthermore, we outline the vital markers present in the EVs and discuss their plausible uses in colon cancer patient therapy in combination with the currently used clinical strategies. The development and application of these EVs will significantly improve the accuracy of diagnosis, lead to more precise prognoses, and may lead to the improved treatment of colorectal cancer.
AB - The relatively high incidence and mortality rates for colorectal carcinoma (CRC) make it a formidable malignant tumor. Comprehensive strategies have been applied to predict patient survival and diagnosis. Various clinical regimens have also been developed to improve the therapeutic outcome. Extracellular vesicles (EVs) are recently proposed cellular structures that can be produced by natural or artificial methods and have been extensively studied. In addition to their innate functions, EVs can be manipulated to be drug carriers and exert many biological functions. The composition of EVs, their intravesicular components, and the surrounding tumor microenvironment are closely related to the development of colorectal cancer. Determining the expression profiles of exocytosis samples and using them as indicators for selecting effective combination therapy is an indispensable direction for EV study and should be regarded as a novel prediction platform in addition to cancer stage, prognosis, and other clinical assessments. In this review, we summarize the function, regulation, and application of EVs in the colon cancer research field. We provide an update on and discuss potential values for clinical applications of EVs. Moreover, we illustrate the specific markers, mediators, and genetic alterations of EVs in colorectal carcinogenesis. Furthermore, we outline the vital markers present in the EVs and discuss their plausible uses in colon cancer patient therapy in combination with the currently used clinical strategies. The development and application of these EVs will significantly improve the accuracy of diagnosis, lead to more precise prognoses, and may lead to the improved treatment of colorectal cancer.
KW - Applications
KW - Biomarkers
KW - Colorectal cancer
KW - Extracellular vesicles
KW - Regulation
UR - http://www.scopus.com/inward/record.url?scp=85112602331&partnerID=8YFLogxK
U2 - 10.3390/biomedicines9080931
DO - 10.3390/biomedicines9080931
M3 - Review article
AN - SCOPUS:85112602331
SN - 2227-9059
VL - 9
JO - Biomedicines
JF - Biomedicines
IS - 8
M1 - 931
ER -