跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Estimation of tool wear and surface roughness development using deep learning and sensors fusion
Pao Ming Huang,
Ching Hung Lee
*
*
此作品的通信作者
電控工程研究所
電機學院/資訊學院碩士在職專班
研究成果
:
Article
›
同行評審
38
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Estimation of tool wear and surface roughness development using deep learning and sensors fusion」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Surface Roughness
100%
Tool Wear
100%
Deep Learning Fusion
100%
Tool Surface
100%
Deep Sensor Fusion
100%
Sensor Selection
60%
Selection Analysis
60%
Control Parameters
20%
Number of Sensors
20%
Vibration Signal
20%
Estimation Model
20%
Estimation Accuracy
20%
Sensor Fusion
20%
Computational Effort
20%
Estimation System
20%
Estimation Approaches
20%
Machining Parameters
20%
Sound Signal
20%
Fusion Method
20%
Online Monitoring
20%
Computer numerical Control
20%
Sensor Signals
20%
Experimental Design Method
20%
Influence Analysis
20%
1-dimensional Convolutional Neural Network (1D-CNN)
20%
Spindle Motor Current
20%
Uniform Experimental Design
20%
Signal Fusion
20%
Accelerated Experiment
20%
Machining Experiment
20%
Engineering
Sensor Fusion
100%
Deep Learning Method
100%
Design Method
33%
Control Parameter
33%
One Dimensional
33%
Collected Data
33%
Using Sensor
33%
Design of Experiments
33%
Computational Effort
33%
Current Signal
33%
Combined System
33%
Machining Parameter
33%
Computer Numerical Control
33%
Sound Signal
33%
Sensor Signal
33%
Convolutional Neural Network
33%