Estimating mixing parameters of regularized feature extractions by genetic algorithm

Bor Chen Kuo*, Kuang Yu Chang, Jinn Min Yang, Li-Wei Ko

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

Many researches show that regularization feature extraction can mitigate the Hough phenomena and the singularity effect for hyperspectral data classification. But how to estimate the regularization mixing parameters efficiently is still a problem. In this paper, a mixing parameter estimation method based on genetic algorithm is proposed. Real hyperspectral data experiment results show that the proposed algorithm can estimating mixing parameters with less computation time than traditional grid method.

原文English
主出版物標題25th Anniversary IGARSS 2005
主出版物子標題IEEE International Geoscience and Remote Sensing Symposium
頁面3902-3904
頁數3
DOIs
出版狀態Published - 2005
事件2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2005 - Seoul, 韓國
持續時間: 25 7月 200529 7月 2005

出版系列

名字International Geoscience and Remote Sensing Symposium (IGARSS)
6

Conference

Conference2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2005
國家/地區韓國
城市Seoul
期間25/07/0529/07/05

指紋

深入研究「Estimating mixing parameters of regularized feature extractions by genetic algorithm」主題。共同形成了獨特的指紋。

引用此