Error assessment in two lidar-derived TIN datasets

Miao Hsiang Peng*, Tian-Yuan Shih

*此作品的通信作者

研究成果: Review article同行評審

16 引文 斯高帕斯(Scopus)

摘要

An accuracy assessment of two lidar-derived elevation datasets was conducted in areas of rugged terrain (average slope 26.6°). Data from 906 ground checkpoints in various land-cover types were collected in situ as reference points. Analysis of the accuracy of lidar-derived elevation as a function of several factors including terrain slope, terrain aspect, and land-cover types was conducted. This paper attempts to characterize vegetation information derived from lidar data based on variables such as canopy volume, local roughness of point clouds, point spacing of lidar ground returns, and vegetation angle. This information was used to evaluate the accuracy of elevation as a function of vegetation type. The experimental results revealed that the accuracy of elevation was considerably correlated with five factors: terrain slope, vegetation angle, canopy volume, local roughness of point clouds, and point spacing of lidar ground returns. The results show a linear relationship between the elevation accuracy and the combination of vegetation angle and the point spacing of ground returns (r2 > 0.9). The combination of vegetation angle and point spacing of ground returns explains a significant amount of the variability in elevation accuracy. Elevation accuracy varied with different vegetation types. The elevation accuracy was also linearly correlated with the product of the point spacing of ground returns and the tangent of the slope (r2 = 0.9). A greater product value implies a greater elevation error. In addition, with regard to terrain aspect, one dense dataset with extra cross-flight data revealed a lesser impact of aspect on elevation accuracy.

原文English
頁(從 - 到)933-947
頁數15
期刊Photogrammetric Engineering and Remote Sensing
72
發行號8
DOIs
出版狀態Published - 1 一月 2006

指紋

深入研究「Error assessment in two lidar-derived TIN datasets」主題。共同形成了獨特的指紋。

引用此