摘要
This paper offers a formal explanation of a rather puzzling and surprising equivalence between the Clar covering polynomials of single zigzag chains and the tiling polynomials of 2×n rectangles for tilings using 1 × 2, 2 × 1 and 2 × 2 tiles. It is demonstrated that the set of Clar covers of single zigzag chains N(n−1) is isomorphic to the set of tilings of a 2×n rectangle. In particular, this isomorphism maps Clar covers of N(n−1) with k aromatic sextets to tilings of a 2×n rectangle using k square 2 × 2 tiles. The proof of this fact is an application of the recently introduced interface theory of Clar covers. The existence of a similar relationship between the Clar covers of more general benzenoid structures and more general tilings of rectangles remains an interesting open problem in chemical graph theory.
原文 | English |
---|---|
頁(從 - 到) | 297-303 |
頁數 | 7 |
期刊 | Discrete Applied Mathematics |
卷 | 243 |
DOIs | |
出版狀態 | Published - 10 7月 2018 |