Enhancing the bio-corrosion resistance of Ni-free ZrCuFeAl bulk metallic glass through nitrogen plasma immersion ion implantation

Her Hsiung Huang*, Hsun Miao Huang, Mau Chin Lin, Wei Zhang, Ying Sui Sun, Wu Kai, Peter K. Liaw

*此作品的通信作者

研究成果: Article同行評審

13 引文 斯高帕斯(Scopus)

摘要

Improving the resistance of bulk metallic glass (BMG) to corrosion, particularly pitting, is crucial to the further development of this material. This study employed surface treatment based on nitrogen plasma immersion ion implantation (N-PIII) to enhance the bio-corrosion resistance of Ni-free Zr62.5Cu22.5Fe5Al10 BMG for application in bone implants. Resistance to bio-corrosion was evaluated by establishing potentiodynamic polarization curves in artificial saliva (AS) and simulated body fluid (SBF). Commercial pure Ti was used as the control. Results demonstrate that N-PIII treatment did not alter the bulk amorphous structure of Zr62.5Cu22.5Fe5Al10 BMG. Following N-PIII treatment, a nitride-containing 15 nm thick oxide film was formed on the BMG. This film significantly improved resistance to bio-corrosion in both AS and SBF solutions. The N-PIII-treated BMG presented lower corrosion rates (50-67% less) and higher corrosion potential (800-1100 mV more) than that observed in untreated BMG and Ti. The N-PIII treatment also significantly improved resistance of the BMG to pitting (increased pitting potential by 500-700 mV). This is the first report of the outstanding resistance of Ni-free Zr-based BMG to bio-corrosion (i.e. corrosion rate 0.01 μA/cm2; pitting potential >1200 mV; corrosion potential >270 mV) in simulated biological environments.

原文English
頁(從 - 到)S660-S665
期刊Journal of Alloys and Compounds
615
發行號S1
DOIs
出版狀態Published - 15 1月 2015

指紋

深入研究「Enhancing the bio-corrosion resistance of Ni-free ZrCuFeAl bulk metallic glass through nitrogen plasma immersion ion implantation」主題。共同形成了獨特的指紋。

引用此