Enhanced Electrochemical Performance of Ca-Doped Na3V2(PO4)2F3/C Cathode Materials for Sodium-Ion Batteries

Diah Agustina Puspitasari, Jagabandhu Patra, Rahmandhika Firdauzha Hary Hernandha, Yu Shen Chiang, Atsushi Inoishi, Bor Kae Chang*, Tai Chou Lee*, Jeng Kuei Chang*

*此作品的通信作者

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

Na3V2(PO4)2F3 (NVPF) with a NASICON structure has garnered attention as a cathode material owing to its stable 3D structure, rapid ion diffusion channels, high operating voltage, and impressive cycling stability. Nevertheless, the low intrinsic electronic conductivity of the material leading to a poor rate capability presents a significant challenge for practical application. Herein, we develop a series of Ca-doped NVPF/C cathode materials with various Ca2+ doping levels using a simple sol-gel and carbon thermal reduction approach. X-ray diffraction analysis confirmed that the inclusion of Ca2+ does not alter the crystal structure of the parent material but instead expands the lattice spacing. Density functional theory calculations depict that substituting Ca2+ ions at the V3+ site reduces the band gap, leading to increased electronic conductivity. This substitution also enhanced the structural stability, preventing lattice distortion during the charge/discharge cycles. Furthermore, the presence of the Ca2+ ion introduces two localized states within the band gap, resulting in enhanced electrochemical performance compared to that of Mg-doped NVPF/C. The optimal NVPF-Ca-0.05/C cathode exhibits superior specific capacities of 124 and 86 mAh g-1 at 0.1 and 10 C, respectively. Additionally, the NVPF-Ca-0.05/C demonstrates satisfactory capacity retention of 70% after 1000 charge/discharge cycles at 10 C. These remarkable results can be attributed to the optimized particle size, excellent structural stability, and enhanced ionic and electronic conductivity induced by the Ca doping. Our findings provide valuable insight into the development of cathode material with desirable electrochemical properties.

原文English
頁(從 - 到)496-506
頁數11
期刊ACS Applied Materials and Interfaces
16
發行號1
DOIs
出版狀態Published - 10 1月 2024

指紋

深入研究「Enhanced Electrochemical Performance of Ca-Doped Na3V2(PO4)2F3/C Cathode Materials for Sodium-Ion Batteries」主題。共同形成了獨特的指紋。

引用此