Enhance Local Feature Consistency with Structure Similarity Loss for 3D Semantic Segmentation

Cheng Wei Lin, Fang Yu Syu, Yi Ju Pan, Kuan Wen Chen*

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

Recently, many research studies have been carried out on using deep learning methods for 3D point cloud understanding. However, there is still no remarkable result on 3D point cloud semantic segmentation compared to those of 2D research. One important reason is that 3D data has higher dimensionality but lacks large datasets, which means that the deep learning model is difficult to optimize and easy to overfit. To overcome this, an essential method is to provide more priors to the learning of deep models. In this paper, we focus on semantic segmentation for point clouds in the real world. To provide priors to the model, we propose a novel loss function called Linearity and Planarity to enhance local feature consistency in the regions with similar local structure. Experiments show that the proposed method improves baseline performance on both indoor and outdoor datasets e.g. S3DIS and Semantic3D.

原文English
主出版物標題2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面55-61
頁數7
ISBN(電子)9781665491907
DOIs
出版狀態Published - 2023
事件2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, 美國
持續時間: 1 10月 20235 10月 2023

出版系列

名字IEEE International Conference on Intelligent Robots and Systems
ISSN(列印)2153-0858
ISSN(電子)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
國家/地區美國
城市Detroit
期間1/10/235/10/23

指紋

深入研究「Enhance Local Feature Consistency with Structure Similarity Loss for 3D Semantic Segmentation」主題。共同形成了獨特的指紋。

引用此