Energy efficient object tracking in sensor networks by mining temporal moving patterns

S. Tseng, Kawuu W. Lin, Ming Hua Hsieh

研究成果: Conference contribution同行評審

9 引文 斯高帕斯(Scopus)

摘要

Object tracking sensor networks (OTSNs) have received extensive attentions for researches in recent years due to the wide applications. One important research issue in OTSNs is the energy saving strategy in considering the limited power of sensor nodes. The past studies on energy saving in OTSNs usually considered the movement behavior of objects as randomness. However, in some real applications, the object movement behavior often carries certain patterns instead of randomness completely. In this paper, we propose an efficient data mining algorithm named TMP-Mine with a special data structure named TMP-Tree for efficiently discovering the temporal movement patterns of objects in sensor networks. Moreover, we propose novel location prediction strategies that employ the discovered temporal movement patterns so as to reduce the prediction errors for energy saving. Through empirical evaluation on simulated, TMP-Mine and the proposed prediction strategies are shown to deliver excellent performance in terms of scalability, accuracy and energy efficiency.

原文English
主出版物標題2008 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, SUTC 2008
頁面170-176
頁數7
DOIs
出版狀態Published - 2008
事件2008 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, SUTC 2008 - Taichung, 台灣
持續時間: 11 6月 200813 6月 2008

出版系列

名字Proceedings - IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing

Conference

Conference2008 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, SUTC 2008
國家/地區台灣
城市Taichung
期間11/06/0813/06/08

指紋

深入研究「Energy efficient object tracking in sensor networks by mining temporal moving patterns」主題。共同形成了獨特的指紋。

引用此