跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Enabling machine learning across heterogeneous sensor networks with graph autoencoders
Johan Medrano
*
,
Fuchun Joseph Lin
*
此作品的通信作者
開源智能聯網研究中心
網路工程研究所
研究成果
:
Conference contribution
›
同行評審
2
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Enabling machine learning across heterogeneous sensor networks with graph autoencoders」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Machine Learning
100%
Graph Autoencoder
100%
Heterogeneous Sensor Networks
100%
Machine Learning Algorithms
28%
Sensor Networks
28%
Sensor Layout
28%
Activity Labels
28%
Unseen
14%
Smart Home
14%
Daily Routines
14%
Resilient
14%
Graph Representation
14%
Sensor Type
14%
Machine Learning Based
14%
Internet of Things Sensors
14%
Activity Recognition System
14%
Deep Graph Learning
14%
Activity Classifier
14%
Gradual Deployment
14%
Algorithm Training
14%
Solitary Elderly
14%
Target Behavior
14%
Abnormality Detection
14%
Computer Science
Sensor Networks
100%
Machine Learning
100%
Learning System
100%
Autoencoder
100%
Machine Learning Algorithm
22%
Recognition System
11%
Activity Recognition
11%
Graph Representation
11%
Internet-Of-Things
11%
Deep Learning Method
11%