摘要
Modulation of intra-cellular calcium by ultrasound offers a possible means for therapeutic applications. One such possibility is the modulation of nucleus pulposus cells as a preventive measure for inter-vertebral disc degeneration. We report a cellular stimulation device (micro-pipette ultrasound) using a glass micro-pipette as a waveguide to deliver ultrasound through the pipette tip and to elevate intra-cellular calcium in nucleus pulposus cells. The device generates two relevant stimuli at the cellular level: ultrasound propagation throughout the cell and acoustic streaming on the apical side. Ultrasound is radiated from a tip of a few microns, and its amplitude is proportional to the input voltage; acoustic streaming can be controlled by the duty factor. The novelty of the device is to impose a unique cellular loading: shear stress on cell apical surfaces combined with compressional waves propagating through the cells. G protein–coupled receptors and acid-sensing ion channel 3 were shown to play a role in calcium elevation by micro-pipette ultrasound in nucleus pulposus cells. Our results demonstrate that micro-pipette ultrasound can be an effective tool to elevate intra-cellular calcium levels in different cells, facilitating the identification of different mechanoreceptors in action.
原文 | English |
---|---|
頁(從 - 到) | 1775-1784 |
頁數 | 10 |
期刊 | Ultrasound in Medicine and Biology |
卷 | 47 |
發行號 | 7 |
DOIs | |
出版狀態 | Published - 7月 2021 |