TY - JOUR
T1 - Electrostatic Control and Chloride Regulation of the Fast Gating of ClC-0 Chloride Channels
AU - Chen, Tsung Yu
AU - Chen, Mei Fang
AU - Lin, Chia Wei
PY - 2003/11
Y1 - 2003/11
N2 - The opening and closing of chloride (Cl-) channels in the ClC family are thought to tightly couple to ion permeation through the channel pore. In the prototype channel of the family, the ClC-0 channel from the Torpedo electric organ, the opening-closing of the pore in the millisecond time range known as "fast gating" is regulated by both external and internal Cl- ions. Although the external Cl- effect on the fast-gate opening has been extensively studied at a quantitative level, the internal Cl- regulation remains to be characterized. In this study, we examine the internal Cl- effects and the electrostatic controls of the fast-gating mechanism. While having little effect on the opening rate, raising [Cl-]i reduces the closing rate (or increases the open time) of the fast gate, with an apparent affinity of > 1 M, a value very, different from the one observed in the external Cl- regulation on the opening rate. Mutating charged residues in the pore also changes the fast-gating properties-the effects are more prominent on the closing rate than on the opening rate, a phenomenon similar to the effect of [Cl-] i on the fast gating. Thus, the alteration of fast-gate closing by charge mutations may come from a combination of two effects: a direct electrostatic interaction between the manipulated charge and the negatively charged glutamate gate and a repulsive force on the gate mediated by the permeant ion. Likewise, the regulations of internal Cl- on the fast gating may also be due to the competition of Cl- with the glutamate gate as well as the overall more negative potential brought to the pore by the binding of Cl-. In contrast, the opening rate of the fast gate is only minimally affected by manipulations of [Cl-]i and charges in the inner pore region. The very different nature of external and internal Cl- regulations on the fast gating thus may suggest that the opening and the closing of the fast gate are not microscopically reversible processes, but form a nonequilibrium cycle in the ClC-0 fast-gating mechanism.
AB - The opening and closing of chloride (Cl-) channels in the ClC family are thought to tightly couple to ion permeation through the channel pore. In the prototype channel of the family, the ClC-0 channel from the Torpedo electric organ, the opening-closing of the pore in the millisecond time range known as "fast gating" is regulated by both external and internal Cl- ions. Although the external Cl- effect on the fast-gate opening has been extensively studied at a quantitative level, the internal Cl- regulation remains to be characterized. In this study, we examine the internal Cl- effects and the electrostatic controls of the fast-gating mechanism. While having little effect on the opening rate, raising [Cl-]i reduces the closing rate (or increases the open time) of the fast gate, with an apparent affinity of > 1 M, a value very, different from the one observed in the external Cl- regulation on the opening rate. Mutating charged residues in the pore also changes the fast-gating properties-the effects are more prominent on the closing rate than on the opening rate, a phenomenon similar to the effect of [Cl-] i on the fast gating. Thus, the alteration of fast-gate closing by charge mutations may come from a combination of two effects: a direct electrostatic interaction between the manipulated charge and the negatively charged glutamate gate and a repulsive force on the gate mediated by the permeant ion. Likewise, the regulations of internal Cl- on the fast gating may also be due to the competition of Cl- with the glutamate gate as well as the overall more negative potential brought to the pore by the binding of Cl-. In contrast, the opening rate of the fast gate is only minimally affected by manipulations of [Cl-]i and charges in the inner pore region. The very different nature of external and internal Cl- regulations on the fast gating thus may suggest that the opening and the closing of the fast gate are not microscopically reversible processes, but form a nonequilibrium cycle in the ClC-0 fast-gating mechanism.
KW - ClC gating
KW - Electrostatic effect
KW - Foot-in-the-door
UR - http://www.scopus.com/inward/record.url?scp=0242415285&partnerID=8YFLogxK
U2 - 10.1085/jgp.200308846
DO - 10.1085/jgp.200308846
M3 - Article
C2 - 14581587
AN - SCOPUS:0242415285
SN - 0022-1295
VL - 122
SP - 641
EP - 651
JO - Journal of General Physiology
JF - Journal of General Physiology
IS - 5
ER -