摘要
The electronic structures of the Si(001) ultra-thin film under various 〈110〉- and 〈010〉-direction uniaxial tensile strains have been calculated using the first-principles modified pseudofunction calculation method and a 20-layer single slab model. It can be inferred from calculated effective masses of electrons near the absolute conduction band minimum (CBM) that the 〈110〉-direction tensile strain induces enhancement and reduction of the mobility in parallel and perpendicular conduction channels, respectively. As for the 〈010〉-direction tensile strain, the effective mass results suggest that tensile strain induces reduction of the mobility in both parallel and perpendicular conduction channels. Under both 〈110〉- and 〈010〉-direction strains, the band gap decreases and near-CBM density of states increases with strain, which suggests strain induced enhancement of thermally excited electron carrier density.
原文 | American English |
---|---|
頁(從 - 到) | 659-663 |
頁數 | 5 |
期刊 | Computer Physics Communications |
卷 | 180 |
發行號 | 4 |
DOIs | |
出版狀態 | Published - 1 4月 2009 |