TY - JOUR
T1 - Electrical, Optical, and Thermal Transport Properties of Oxygen-Deficient Amorphous WOx (2.5 < x < 3) Films
AU - Kim, Gowoon
AU - Cho, Hai Jun
AU - Sheu, Yu-Miin
AU - Ohta, Hiromichi
PY - 2019/6/27
Y1 - 2019/6/27
N2 - Oxygen-deficient tungsten oxide (WOx) is known as an active material for various future applications such as smart displays, photocatalysts, Li-ion battery, and so on. WOx exhibits versatile properties depending on the valence state of W, which can vary from +6 to +4. Therefore, clarifying the relationship between x, the valence state of W ion, and the material properties of WOx is crucial for discovering more unique device applications. In case of crystalline WOx, since WOx has many different phases, the valence state of W cannot be modulated continuously from +6 to +4. On the other hand, there is no phase boundary in amorphous (a-) WOx, the valence state of W ion can be continuously modulated against x, and the effect of valence state of W on the material properties of WOx can be thoroughly examined. Here, we report the electrical, optical, and thermal properties of a-WOx films with several valence states of +6 (d0), +5 (d1), and +4 (d2) for x ranging from 2.511 to 2.982. Although the +6 dominant films were electrical insulators with optical transparency in the visible region, we found that both optical transmissivity and electrical resistivity decreased drastically with increase in the +5 concentrations, which also enhances the thermal conductivity because heat can be carried by additional conduction electrons. As the +4 state became dominant in the film, the resistivity slightly increased, whereas the low visible transmission was maintained. These results suggest that the redox of tungsten between +6 and +5 is attributed to all versatile properties of a-WOx, which would be of great use for developing unique devices in the future.
AB - Oxygen-deficient tungsten oxide (WOx) is known as an active material for various future applications such as smart displays, photocatalysts, Li-ion battery, and so on. WOx exhibits versatile properties depending on the valence state of W, which can vary from +6 to +4. Therefore, clarifying the relationship between x, the valence state of W ion, and the material properties of WOx is crucial for discovering more unique device applications. In case of crystalline WOx, since WOx has many different phases, the valence state of W cannot be modulated continuously from +6 to +4. On the other hand, there is no phase boundary in amorphous (a-) WOx, the valence state of W ion can be continuously modulated against x, and the effect of valence state of W on the material properties of WOx can be thoroughly examined. Here, we report the electrical, optical, and thermal properties of a-WOx films with several valence states of +6 (d0), +5 (d1), and +4 (d2) for x ranging from 2.511 to 2.982. Although the +6 dominant films were electrical insulators with optical transparency in the visible region, we found that both optical transmissivity and electrical resistivity decreased drastically with increase in the +5 concentrations, which also enhances the thermal conductivity because heat can be carried by additional conduction electrons. As the +4 state became dominant in the film, the resistivity slightly increased, whereas the low visible transmission was maintained. These results suggest that the redox of tungsten between +6 and +5 is attributed to all versatile properties of a-WOx, which would be of great use for developing unique devices in the future.
UR - http://www.scopus.com/inward/record.url?scp=85074965686&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.9b02448
DO - 10.1021/acs.jpcc.9b02448
M3 - Article
AN - SCOPUS:85074965686
SN - 1932-7447
VL - 123
SP - 15419
EP - 15424
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 25
ER -