摘要
The photovoltaic (PV) nature of the silicon (Si) quantum dot super lattice (QDSL) is studied with an atomiclayer-deposited aluminum oxide film (ALD-Al2O3) and a conventional sputtered-grown amorphous silicon carbide film (a-SiC). The QDSL structures act as an intermediate layer in a p/i/n+ Si solar cell. The QDSL consists of 4-nm Si on 2-nm SiC nanodisks (NDs) arrayed in an ALD-Al2O3 and a-SiC passivation matrix. Formation of Si-NDs was confirmed by bright field scanning transmission electron microscope. A significant PV response in generating a high photocurrent density Jsc of 30.15mA/cm2open circuit voltage Voc of 0.50 V, fill factor FF of 0.61, and efficiency η of 9.12% was observed in ALD-Al2O3/QDSL solar cell with respect to a-SiC/QDSL solar cell with Jsc of 26.94 mA/cm2, Voc of 0.50 V, FF of 0.47, and ? of 6.42%. A wide range of photo-carrier transports by the ALD-Al2O3/QDSL structure is possible in the external quantum efficiency spectra with respect to a-SiC/QDSL solar cell. The enhanced PV performance of the QD solar cells was clarified in terms of simulating the absorption contributions for all possible transitions in the nanostructure with different passivation films.
原文 | English |
---|---|
文章編號 | 7935526 |
頁(從 - 到) | 2886-2892 |
頁數 | 7 |
期刊 | IEEE Transactions on Electron Devices |
卷 | 64 |
發行號 | 7 |
DOIs | |
出版狀態 | Published - 1 7月 2017 |