TY - JOUR
T1 - Edge-Cloud Offloading
T2 - Knapsack Potential Game in 5G Multi-Access Edge Computing
AU - Hsieh, Cheng Ying
AU - Ren, Yi
AU - Chen, Jyh Cheng
N1 - Publisher Copyright:
© 2002-2012 IEEE.
PY - 2023/11/1
Y1 - 2023/11/1
N2 - In 5G, multi-access edge computing enables the applications to be offloaded to near-end edge servers for faster response. According to the 3GPP standards, users in 5G are separated into many types, e.g., vehicles, AR/VR, IoT devices, etc. Specifically, the high-priority traffic can preempt edge resources to guarantee the service quality. However, even if a traffic is transmitted with low priority, its latency requirement in 5G is much lower than that in 4G. Too strict latency requirement and priority-based service make resource configuration difficult on the edge side. Therefore, we propose the edge-cloud offloading mechanism, in which each edge server can offload tasks to back-end cloud server to ensure service quality of both high- and low-priority traffic. In this paper, we establish a priority-based queuing system to model the edge-cloud offloading behaviors. Based on the formulation of our system model, we propose Knapsack Potential Game (KPG) to derive an optimal offloading ratio for each edge server to balance the cost-effectiveness of the overall system. We demonstrate that KPG has low computational complexity and outperforms two baseline algorithms. The results indicate that KPG's performance is optimal and provides a theoretical guideline to operators while designing their edge-cloud offloading strategies without large-scale implementation.
AB - In 5G, multi-access edge computing enables the applications to be offloaded to near-end edge servers for faster response. According to the 3GPP standards, users in 5G are separated into many types, e.g., vehicles, AR/VR, IoT devices, etc. Specifically, the high-priority traffic can preempt edge resources to guarantee the service quality. However, even if a traffic is transmitted with low priority, its latency requirement in 5G is much lower than that in 4G. Too strict latency requirement and priority-based service make resource configuration difficult on the edge side. Therefore, we propose the edge-cloud offloading mechanism, in which each edge server can offload tasks to back-end cloud server to ensure service quality of both high- and low-priority traffic. In this paper, we establish a priority-based queuing system to model the edge-cloud offloading behaviors. Based on the formulation of our system model, we propose Knapsack Potential Game (KPG) to derive an optimal offloading ratio for each edge server to balance the cost-effectiveness of the overall system. We demonstrate that KPG has low computational complexity and outperforms two baseline algorithms. The results indicate that KPG's performance is optimal and provides a theoretical guideline to operators while designing their edge-cloud offloading strategies without large-scale implementation.
KW - 3GPP standards
KW - 5G
KW - Multi-access edge computing
KW - QoS
KW - performance analysis
UR - http://www.scopus.com/inward/record.url?scp=85149364940&partnerID=8YFLogxK
U2 - 10.1109/TWC.2023.3248270
DO - 10.1109/TWC.2023.3248270
M3 - Article
AN - SCOPUS:85149364940
SN - 1536-1276
VL - 22
SP - 7158
EP - 7171
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 11
ER -