DROID: Driver-Centric Risk Object Identification

Chengxi Li*, Stanley H. Chan, Yi Ting Chen

*此作品的通信作者

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

Identification of high-risk driving situations is generally approached through collision risk estimation or accident pattern recognition. In this work, we approach the problem from the perspective of subjective risk. We operationalize subjective risk assessment by predicting driver behavior changes and identifying the cause of changes. To this end, we introduce a new task called driver-centric risk object identification (DROID), which uses egocentric video to identify object(s) influencing a driver's behavior, given only the driver's response as the supervision signal. We formulate the task as a cause-effect problem and present a novel two-stage DROID framework, taking inspiration from models of situation awareness and causal inference. A subset of data constructed from the Honda Research Institute Driving Dataset (HDD) is used to evaluate DROID. We demonstrate state-of-the-art DROID performance, even compared with strong baseline models using this dataset. Additionally, we conduct extensive ablative studies to justify our design choices. Moreover, we demonstrate the applicability of DROID for risk assessment.

原文English
頁(從 - 到)13683-13698
頁數16
期刊IEEE Transactions on Pattern Analysis and Machine Intelligence
45
發行號11
DOIs
出版狀態Published - 1 11月 2023

指紋

深入研究「DROID: Driver-Centric Risk Object Identification」主題。共同形成了獨特的指紋。

引用此