TY - JOUR
T1 - Dovitinib acts as a novel radiosensitizer in hepatocellular carcinoma by targeting SHP-1/STAT3 signaling
AU - Huang, Chao Yuan
AU - Tai, Wei Tien
AU - Wu, Szu Yuan
AU - Shih, Chih Ting
AU - Chen, Min Hsuan
AU - Tsai, Ming Hsien
AU - Kuo, Chiung Wen
AU - Shiau, Chung Wai
AU - Hung, Man Hsin
AU - Chen, Kuen Feng
N1 - Publisher Copyright:
© 2016 Elsevier Inc. All rights reserved.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Purpose Hepatocellular carcinoma (HCC) is among the most lethal human malignancies, and curative therapy is not an option for most patients. There is growing interest in the potential benefit of combining targeted therapies with radiation therapy (RT). This study aimed to characterize the efficacy and mechanism of an investigational drug, dovitinib, used in combination with RT. Methods and Materials HCC cell lines (PLC5, Hep3B, SK-Hep1, HA59T, and Huh-7) were treated with dovitinib, RT, or both, and apoptosis and signal transduction were analyzed. Results Dovitinib treatment resulted in Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1)-mediated downregulation of p-STAT3 and promoted potent apoptosis of HCC cells. Ectopic expression of STAT3, or inhibition of SHP-1, diminished the effects of dovitinib on HCC cells. By ectopic expression and purified recombinant proteins of various mutant forms of SHP-1, the N-SH2 domain of SHP-1 was found to be required for dovitinib treatment. Overexpression of STAT3 or catalytic-dead mutant SHP-1 restored RT-induced reduction of HCC cell survival. Conversely, ectopic expression of SHP-1 or activation of SHP-1 by dovitinib enhanced the effects of RT against HCC in vitro and in vivo. Conclusions SHP-1/STAT3 signaling is critically associated with the radiosensitivity of HCC cells. Combination therapy with RT and the SHP-1 agonist, such as dovitinib, resulted in enhanced in vitro and in vivo anti-HCC effects.
AB - Purpose Hepatocellular carcinoma (HCC) is among the most lethal human malignancies, and curative therapy is not an option for most patients. There is growing interest in the potential benefit of combining targeted therapies with radiation therapy (RT). This study aimed to characterize the efficacy and mechanism of an investigational drug, dovitinib, used in combination with RT. Methods and Materials HCC cell lines (PLC5, Hep3B, SK-Hep1, HA59T, and Huh-7) were treated with dovitinib, RT, or both, and apoptosis and signal transduction were analyzed. Results Dovitinib treatment resulted in Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1)-mediated downregulation of p-STAT3 and promoted potent apoptosis of HCC cells. Ectopic expression of STAT3, or inhibition of SHP-1, diminished the effects of dovitinib on HCC cells. By ectopic expression and purified recombinant proteins of various mutant forms of SHP-1, the N-SH2 domain of SHP-1 was found to be required for dovitinib treatment. Overexpression of STAT3 or catalytic-dead mutant SHP-1 restored RT-induced reduction of HCC cell survival. Conversely, ectopic expression of SHP-1 or activation of SHP-1 by dovitinib enhanced the effects of RT against HCC in vitro and in vivo. Conclusions SHP-1/STAT3 signaling is critically associated with the radiosensitivity of HCC cells. Combination therapy with RT and the SHP-1 agonist, such as dovitinib, resulted in enhanced in vitro and in vivo anti-HCC effects.
UR - http://www.scopus.com/inward/record.url?scp=84959562122&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2016.01.016
DO - 10.1016/j.ijrobp.2016.01.016
M3 - Article
C2 - 26960749
AN - SCOPUS:84959562122
SN - 0360-3016
VL - 95
SP - 761
EP - 771
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 2
ER -