跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Domain adaptation meets disentangled representation learning and style transfer
Vu Hoang Tran
*
,
Ching-Chun Huang
*
此作品的通信作者
研究成果
:
Conference contribution
›
同行評審
5
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Domain adaptation meets disentangled representation learning and style transfer」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Domain Adaptation
100%
Representation Format
100%
Transfer Learning
100%
Style Transfer
100%
Disentangled Representation Learning
100%
Common Parts
66%
Disentangled Representation
66%
Training Methods
33%
Challenging Tasks
33%
Transferability
33%
Individual Domain
33%
Learned Features
33%
Task Domain
33%
Training Objectives
33%
Semi-supervised Domain Adaptation
33%
Transferrable
33%
Partial Transfer Learning
33%
Image Style Transfer
33%
Negative Transfer
33%
Computer Science
Domain Adaptation
100%
Representation Learning
100%
Transfer Learning
50%
Experimental Result
25%
Trained Network
25%
Training Objective
25%
Learned Feature
25%
Biochemistry, Genetics and Molecular Biology
Transfer of Learning
100%