Distributed fault-tolerant classification in wireless sensor networks

Tsang Yi Wang*, Yunghsiang S. Han, Pramod K. Varshney, Po-Ning Chen


研究成果: Article同行評審

86 引文 斯高帕斯(Scopus)


Fault-tolerance and data fusion have been considered as two fundamental functions in wireless sensor networks. In this paper, we propose a novel approach for distributed multiclass classification using a fault-tolerant fusion rule for wireless sensor networks. Binary decisions from local sensors, possibly in the presence of faults, are forwarded to the fusion center that determines the final classification result. Classification fusion in our approach is implemented via error correcting codes to incorporate fault-tolerance capability. This new approach not only provides an improved fault-tolerance capability but also reduces computation time and memory requirements at the fusion center. Code matrix design is essential for the design of such systems. Two efficient code matrix design algorithms are proposed in this paper. The relative merits of both algorithms are also studied. We also develop sufficient conditions for asymptotic detection of the correct hypothesis by the proposed approach. Performance evaluation of the proposed approach in the presence of faults is provided. These results show significant improvement in fault-tolerance capability as compared with conventional parallel fusion networks.

頁(從 - 到)724-733
期刊IEEE Journal on Selected Areas in Communications
出版狀態Published - 1 4月 2005


深入研究「Distributed fault-tolerant classification in wireless sensor networks」主題。共同形成了獨特的指紋。