Distance Spectrum Formula for the Largest Minimum Hamming Distance of Finite-Length Binary Block Codes

Ling Hua Chang, Carol Wang, Po-Ning Chen, Yunghsiang S. Han, Vincent Y.F. Tan

研究成果: Conference contribution同行評審

4 引文 斯高帕斯(Scopus)

摘要

In this paper, an exact distance spectrum formula for the largest minimum Hamming distance of finite-length binary block codes is presented. The exact formula indicates that the largest minimum distance of finite-length block codes can be fully characterized by the information spectrum of the Hamming distance between two independent and identically distributed (i.i.d.) random codewords. The distance property of finite-length block codes is then connected to the distance spectrum. A side result of this work is a new lower bound to the largest minimum distance of finite-length block codes. Numerical examinations show that the new lower bound improves the finite-length Gilbert-Varshamov lower bound and can reach the minimum distance of existing finite-length block codes.

原文English
主出版物標題2017 IEEE Information Theory Workshop, ITW 2017
發行者Institute of Electrical and Electronics Engineers Inc.
頁面419-423
頁數5
ISBN(電子)9781509030972
DOIs
出版狀態Published - 11月 2017
事件2017 IEEE Information Theory Workshop, ITW 2017 - Kaohsiung, 台灣
持續時間: 6 11月 201710 11月 2017

出版系列

名字Information Theory Workshop
發行者IEEE
ISSN(列印)2475-420X

Conference

Conference2017 IEEE Information Theory Workshop, ITW 2017
國家/地區台灣
城市Kaohsiung
期間6/11/1710/11/17

指紋

深入研究「Distance Spectrum Formula for the Largest Minimum Hamming Distance of Finite-Length Binary Block Codes」主題。共同形成了獨特的指紋。

引用此