摘要
Mood dysregulation refers to the inability of a person to control their negative emotions, and it is linked to various stressful experiences. Dysregulated neural synaptic plasticity and actin-filament dynamics are important regulators of stress response in animal models. However, until now, there is no evidence to differential the mechanisms of synaptic plasticity and actin-filament dynamics in stress susceptibility and stress-resistant. Here we found that depression-like behaviour was observed in the susceptible group following chronic social defeat stress (CSDS) exposure, but not in stress-resistant mice. High-frequency stimulation-induced long-term potentiation (LTP) was impaired in the CSDS-induced depression-susceptible group. Further, the levels of pro-brain derived neurotrophic factor (BDNF), mature BDNF, PSD-95, phosphorylated CaMKII, and phosphorylated Cofilin, an actin-filament dynamics regulator, were reduced in CSDS-induced depression-susceptible mice unlike in stress-resistant mice. These results demonstrate that synaptic plasticity-related molecules, such as BDNF and phosphorylated Cofilin, are important for maintaining synaptic functions and structure in mice that experience more stress.
原文 | English |
---|---|
頁(從 - 到) | 112-118 |
頁數 | 7 |
期刊 | Biochemical and Biophysical Research Communications |
卷 | 562 |
DOIs | |
出版狀態 | Published - 12 7月 2021 |