Development of semiclassical molecular dynamics simulation method

Hiroki Nakamura*, Shinkoh Nanbu, Yoshiaki Teranishi, Ayumi Ohta

*此作品的通信作者

研究成果: Article同行評審

18 引文 斯高帕斯(Scopus)

摘要

Various quantum mechanical effects such as nonadiabatic transitions, quantum mechanical tunneling and coherence play crucial roles in a variety of chemical and biological systems. In this paper, we propose a method to incorporate tunneling effects into the molecular dynamics (MD) method, which is purely based on classical mechanics. Caustics, which define the boundary between classically allowed and forbidden regions, are detected along classical trajectories and the optimal tunneling path with minimum action is determined by starting from each appropriate caustic. The real phase associated with tunneling can also be estimated. Numerical demonstration with use of a simple collinear chemical reaction O + HCl → OH + Cl is presented in order to help the reader to well comprehend the method proposed here. Generalization to the on-the-fly ab initio version is rather straightforward. By treating the nonadiabatic transitions at conical intersections by the Zhu-Nakamura theory, new semiclassical MD methods can be developed.

原文English
頁(從 - 到)11972-11985
頁數14
期刊Physical Chemistry Chemical Physics
18
發行號17
DOIs
出版狀態Published - 2016

指紋

深入研究「Development of semiclassical molecular dynamics simulation method」主題。共同形成了獨特的指紋。

引用此