Detection of Mild Cognitive Impairment by Facial Videos

Chien Cheng Lee*, Hong Han Hank Chau, Hsiao Lun Wang, Yi Fang Chuang, Yawgeng Chau

*此作品的通信作者

研究成果: Conference contribution同行評審

4 引文 斯高帕斯(Scopus)

摘要

In this study, we proposed a two-stream ConvNet model to detect the mild cognitive impairment (MCI) using facial videos. The image frame containing the facial spatial information and the stacked optical flow fields containing the motion information were extracted from facial videos. Both were input to the two-stream CovnNet model to predict MCI. The experimental results showed that the validation accuracy reaches 91%. This finding indicates that an automatic, non-invasive, and inexpensive MCI screening methods from facial videos is feasible.

原文English
主出版物標題Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面197-198
頁數2
ISBN(電子)9781665470506
DOIs
出版狀態Published - 2022
事件2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 - Taipei, 台灣
持續時間: 6 7月 20228 7月 2022

出版系列

名字Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022

Conference

Conference2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
國家/地區台灣
城市Taipei
期間6/07/228/07/22

指紋

深入研究「Detection of Mild Cognitive Impairment by Facial Videos」主題。共同形成了獨特的指紋。

引用此