Detecting Personal Life Events from Twitter by Multi-Task LSTM

An Zi Yen, Hen Hsen Huang, Hsin Hsi Chen

研究成果: Conference contribution同行評審

11 引文 斯高帕斯(Scopus)

摘要

People are used to log their life on the social media platform. Life event can be expressed explicitly or implicitly in a text description. However, a description does not always contain life events related to a specific individual. To tell if there exist any life events and further know their categories is indispensable for event retrieval. This paper explores various LSTM models to detect and classify life events in tweets. Experiments show that the proposed Multi-Task LSTM model with attention achieves the best performance.

原文English
主出版物標題The Web Conference 2018 - Companion of the World Wide Web Conference, WWW 2018
發行者Association for Computing Machinery, Inc
頁面21-22
頁數2
ISBN(電子)9781450356404
DOIs
出版狀態Published - 23 4月 2018
事件27th International World Wide Web, WWW 2018 - Lyon, 法國
持續時間: 23 4月 201827 4月 2018

出版系列

名字The Web Conference 2018 - Companion of the World Wide Web Conference, WWW 2018

Conference

Conference27th International World Wide Web, WWW 2018
國家/地區法國
城市Lyon
期間23/04/1827/04/18

指紋

深入研究「Detecting Personal Life Events from Twitter by Multi-Task LSTM」主題。共同形成了獨特的指紋。

引用此