TY - JOUR
T1 - Detailed mechanism and kinetics of reactions of anti- and syn-CH3CHOO with HC(O)OH
T2 - infrared spectra of conformers of hydroperoxyethyl formate
AU - Behera, Bedabyas
AU - Lee, Yuan Pern
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2023/12/13
Y1 - 2023/12/13
N2 - The reaction of CH3CHOO with HC(O)OH has a large rate coefficient so that it might play a significant role in the formation of secondary organic aerosols (SOA) in the atmosphere. We investigated the detailed mechanism and kinetics of the reactions of Criegee intermediate anti- and syn-CH3CHOO with HC(O)OH with a step-scan Fourier-transform infrared spectrometer by recording time-resolved absorption spectra of transient species and end products produced upon irradiation at 308 nm of a flowing mixture of CH3CHI2/O2/HC(O)OH at 298 K and 60 Torr. Thirteen bands of hydroperoxyethyl formate [HC(O)OCH(CH3)OOH, HPEF], the hydrogen-transferred adduct of CH3CHOO and HC(O)OH, were observed. Careful analysis deconvoluted these bands into absorption of three conformers of HPEF: a transient HPEF (P2*/P3*), a more stable open-form HPEF (mainly P2), and a stable intramolecularly hydrogen-bonded HPEF (mainly P1). At a later period, the end-product formic acetic anhydride [CH3C(O)OC(O)H, FAA], a dehydrated product of HPEF, was observed; this end-product is the same as that observed in CH2OO + CH3C(O)OH. Theoretical calculations on the reaction pathway scheme were performed to elucidate these reaction paths. Syn-CH3CHOO + HC(O)OH produced conformers P2*/P3* initially, followed by conversion to conformers P2, whereas anti-CH3CHOO + HC(O)OH produced conformers P2 and P1 directly. We derived a rate coefficient for the reaction CH3CHOO + HC(O)OH to be k = (2.1 ± 0.7) × 10−10 cm3 molecule−1 s−1 at 298 K and 40-80 Torr; the rate coefficient appeared to show insignificant conformation-specificity. We also found that FAA was produced mainly from the dehydration of the open-form HPEF (P2) with a rate coefficient k = (1420 ± 70) s−1; the intramolecularly hydrogen-bonded HPEF (P1) is stable.
AB - The reaction of CH3CHOO with HC(O)OH has a large rate coefficient so that it might play a significant role in the formation of secondary organic aerosols (SOA) in the atmosphere. We investigated the detailed mechanism and kinetics of the reactions of Criegee intermediate anti- and syn-CH3CHOO with HC(O)OH with a step-scan Fourier-transform infrared spectrometer by recording time-resolved absorption spectra of transient species and end products produced upon irradiation at 308 nm of a flowing mixture of CH3CHI2/O2/HC(O)OH at 298 K and 60 Torr. Thirteen bands of hydroperoxyethyl formate [HC(O)OCH(CH3)OOH, HPEF], the hydrogen-transferred adduct of CH3CHOO and HC(O)OH, were observed. Careful analysis deconvoluted these bands into absorption of three conformers of HPEF: a transient HPEF (P2*/P3*), a more stable open-form HPEF (mainly P2), and a stable intramolecularly hydrogen-bonded HPEF (mainly P1). At a later period, the end-product formic acetic anhydride [CH3C(O)OC(O)H, FAA], a dehydrated product of HPEF, was observed; this end-product is the same as that observed in CH2OO + CH3C(O)OH. Theoretical calculations on the reaction pathway scheme were performed to elucidate these reaction paths. Syn-CH3CHOO + HC(O)OH produced conformers P2*/P3* initially, followed by conversion to conformers P2, whereas anti-CH3CHOO + HC(O)OH produced conformers P2 and P1 directly. We derived a rate coefficient for the reaction CH3CHOO + HC(O)OH to be k = (2.1 ± 0.7) × 10−10 cm3 molecule−1 s−1 at 298 K and 40-80 Torr; the rate coefficient appeared to show insignificant conformation-specificity. We also found that FAA was produced mainly from the dehydration of the open-form HPEF (P2) with a rate coefficient k = (1420 ± 70) s−1; the intramolecularly hydrogen-bonded HPEF (P1) is stable.
UR - http://www.scopus.com/inward/record.url?scp=85180601366&partnerID=8YFLogxK
U2 - 10.1039/d3cp04086k
DO - 10.1039/d3cp04086k
M3 - Article
C2 - 38116617
AN - SCOPUS:85180601366
SN - 1463-9076
VL - 26
SP - 1950
EP - 1966
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 3
ER -