Design and Simulation of InGaN-Based Red Vertical-Cavity Surface-Emitting Lasers

Tai Cheng Yu, Wei Ta Huang, Hsiang Chen Wang, An Ping Chiu, Chih Hsiang Kou, Kuo Bin Hong*, Shu Wei Chang, Chi Wai Chow, Hao Chung Kuo*

*此作品的通信作者

研究成果: Article同行評審

摘要

We propose a highly polarized vertical-cavity surface-emitting laser (VCSEL) consisting of staggered InGaN multiple quantum wells (MQWs), with the resonance cavity and polarization enabled by a bottom nanoporous (NP) n-GaN distributed Bragg reflectors (DBRs), and top TiO2 high-index contrast gratings (HCGs). Optoelectronic simulations of the 612 nm VCSEL were systematically and numerically investigated. First, we investigated the influences of the NP DBR and HCG geometries on the optical reflectivity. Our results indicate that when there are more than 17 pairs of NP GaN DBRs with 60% air voids, the reflectance can be higher than 99.7%. Furthermore, the zeroth-order reflectivity decreases rapidly when the HCG’s period exceeds 518 nm. The optimal ratios of width-to-period (52.86 ± 1.5%) and height-to-period (35.35 ± 0.14%) were identified. The staggered MQW design also resulted in a relatively small blue shift of 5.44 nm in the emission wavelength under a high driving current. Lastly, we investigated the cavity mode wavelength and optical threshold gain of the VCSEL with a finite size of HCG. A large threshold gain difference of approximately 67.4–74% between the 0th and 1st order transverse modes can be obtained. The simulation results in this work provide a guideline for designing red VCSELs with high brightness and efficiency.

原文English
文章編號87
期刊Micromachines
15
發行號1
DOIs
出版狀態Published - 1月 2024

指紋

深入研究「Design and Simulation of InGaN-Based Red Vertical-Cavity Surface-Emitting Lasers」主題。共同形成了獨特的指紋。

引用此