Design and Analysis of Dynamic Block-setup Reservation Algorithm for 5G Network Slicing

Cheng Ying Hsieh, Tuan Phung-Duc, Yi Ren, Jyh Cheng Chen

研究成果: Article同行評審


In 5G, network functions can be scaled out/in dynamically to adjust the capacity for network slices. The scale-out/-in procedure, namely autoscaling, enhances performance by scaling out instances and reduces operational costs by scaling in instances. However, the autoscaling problems in 5G networks are different from those in traditional cloud computing. The 5G network functions must be considered the simultaneous deployment of multiple instances; moreover, the deployment of 5G network functions is more frequent than that of traditional cloud computing. Both the number and timing of deployment will substantially affect the cost-effectiveness of the system. In this paper, we first identify the autoscaling issues specifically based on the 3GPP standards. We develop a low-complexity analytical queuing model to formulate the problem and quantify a set of performance metrics with closed-form solutions. The proposed analytical model and closed-form solutions are cross-validated by extensive simulations. The analytical model offers design insights and theoretical guidelines, helping us study the effectiveness of reservations. We proposed a dynamic block-setup reservation algorithm (DBRA) to find the optimal reserved number and threshold value of network slices. Therefore, mobile operators can balance the system's cost-effectiveness without large-scaled testing and real deployment, saving cost on time and money.

期刊IEEE Transactions on Mobile Computing
出版狀態Accepted/In press - 2022


深入研究「Design and Analysis of Dynamic Block-setup Reservation Algorithm for 5G Network Slicing」主題。共同形成了獨特的指紋。