摘要
Non-radiative energy transfer (NRET) from quantum dots (QDs) to monolayer MoS2 has been shown to greatly enhance the photoresponsivity of the MoS2 photodetector, lifting the limitations imposed by monolayer absorption thickness. Studies were often performed on a photodetector with a channel length of only a few ffm and an active area of a few ffm2. Here, we demonstrate a QD sensitized monolayer MoS2 photodetector with a large channel length of 40 ffm and an active area of 0.13 mm2. The QD sensitizing coating greatly enhances photoresponsivity by 14-fold at 1.3 ffW illumination power, as compared with a plain monolayer MoS2 photodetector without QD coating. The photoresponsivity enhancement increases as QD coating density increases. However, QD coating also causes dark current to increase due to charge doping from QD on MoS2. At low QD density, the increase of photocurrent is much larger than the increase of dark current, resulting in a significant enhancement of the signal on/off ratio. As QD density increases, the increase of photocurrent becomes slower than the increase of dark current. As a result, photoresponsivity increases, but the on/off ratio decreases. This inverse dependence on QD density is an important factor to consider in the QD sensitized photodetector design.
原文 | English |
---|---|
文章編號 | 1828 |
頁(從 - 到) | 1-10 |
頁數 | 10 |
期刊 | Nanomaterials |
卷 | 10 |
發行號 | 9 |
DOIs | |
出版狀態 | Published - 9月 2020 |