摘要
Fibrosis is an excessive accumulation of the extracellular matrix within solid organs in response to injury and a common pathway that leads functional failure. No clinically approved agent is available to reverse or even prevent this process. Herein, we report a nanotechnology-based approach that utilizes a drug carrier to deliver a therapeutic cargo specifically to fibrotic kidneys, thereby improving the antifibrotic effect of the drug and reducing systemic toxicity. We first adopted in vitro-in vivo combinatorial phage display technology to identify peptide ligands that target myofibroblasts in mouse unilateral ureteral obstruction (UUO)-induced fibrotic kidneys. We then engineered lipid-coated poly(lactic-co-glycolic acid) nanoparticles (NPs) with fibrotic kidney-homing peptides on the surface and sorafenib, a potent antineoplastic multikinase inhibitor, encapsulated in the core. Sorafenib loaded in the myofibroblast-targeted NPs significantly reduced the infiltration of α-smooth muscle actin-expressing myofibroblasts and deposition of collagen I in UUO-treated kidneys and enhanced renal plasma flow measured by Technetium-99m mercaptoacetyltriglycine scintigraphy. This study demonstrates the therapeutic potential of the newly identified peptide fragments as anchors to target myofibroblasts and represents a strategic advance for selective delivery of sorafenib to treat renal fibrosis. Significance statement: Renal fibrosis is a pathological feature accounting for the majority of issues in chronic kidney disease (CKD), which may progress to end-stage renal disease (ESRD). This manuscript describes a myofibroblast-targeting drug delivery system modified with phage-displayed fibrotic kidney-homing peptides. By loading the myofibroblast-targeting nanoparticles (NPs) with sorafenib, a multikinase inhibitor, the NPs could suppress collagen synthesis in cultured human myofibroblasts. When given intravenously to mice with UUO-induced renal fibrosis, sorafenib loaded in myofibroblast-targeting NPs significantly ameliorated renal fibrosis. This approach provides an efficient therapeutic option to renal fibrosis. The myofibroblast-targeting peptide ligands and nanoscale drug carriers may be translated into clinical application in the future.
原文 | English |
---|---|
頁(從 - 到) | 169-179 |
頁數 | 11 |
期刊 | Journal of Controlled Release |
卷 | 346 |
DOIs | |
出版狀態 | Published - 6月 2022 |