Deep Reinforcement Learning for Video Prediction

Yung Han Ho, Chuan Yuan Cho, Wen Hsiao Peng

研究成果: Conference contribution同行評審

摘要

This paper introduces a hybrid video prediction scheme that combines the classic parametric overlapped block motion compensation (POBMC) technique with neural networks. Most learning-based video prediction methods rely on a black-box-like model for either direct generation of future video frames or estimation of a dense motion field. The model complexity often increases drastically with frame resolution. Departing from pure black-box approaches, this paper leverages the theoretically-grounded POBMC in a reinforcement learning framework to estimate a sparse motion field for future frame warping. Two neural networks are trained to identify critical points in the motion field for motion estimation. We train our model on 10k unlabeled frames in KITTI dataset and achieve the state-of-the-art SSIM score of 0.923 on CaltechPed and an average SSIM scroe of 0.856 on Common Intermediate Format (CIF) standard sequences.

原文English
主出版物標題2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings
發行者IEEE Computer Society
頁面604-608
頁數5
ISBN(電子)9781538662496
DOIs
出版狀態Published - 9月 2019
事件26th IEEE International Conference on Image Processing, ICIP 2019 - Taipei, Taiwan
持續時間: 22 9月 201925 9月 2019

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
2019-September
ISSN(列印)1522-4880

Conference

Conference26th IEEE International Conference on Image Processing, ICIP 2019
國家/地區Taiwan
城市Taipei
期間22/09/1925/09/19

指紋

深入研究「Deep Reinforcement Learning for Video Prediction」主題。共同形成了獨特的指紋。

引用此