Deep learning and ensemble stacking technique for differentiating polypoidal choroidal vasculopathy from neovascular age-related macular degeneration

Yu Bai Chou, Chung Hsuan Hsu, Wei Shiang Chen, Shih Jen Chen, De Kuang Hwang, Yi Ming Huang, An Fei Li, Henry Horng Shing Lu*

*此作品的通信作者

研究成果: Article同行評審

17 引文 斯高帕斯(Scopus)

摘要

Polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (nAMD) share some similarity in clinical imaging manifestations. However, their disease entity and treatment strategy as well as visual outcomes are very different. To distinguish these two vision-threatening diseases is somewhat challenging but necessary. In this study, we propose a new artificial intelligence model using an ensemble stacking technique, which combines a color fundus photograph-based deep learning (DL) model and optical coherence tomography-based biomarkers, for differentiation of PCV from nAMD. Furthermore, we introduced multiple correspondence analysis, a method of transforming categorical data into principal components, to handle the dichotomous data for combining with another image DL system. This model achieved a robust performance with an accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of 83.67%, 80.76%, 84.72%, and 88.57%, respectively, by training nearly 700 active cases with suitable imaging quality and transfer learning architecture. This work could offer an alternative method of developing a multimodal DL model, improve its efficiency for distinguishing different diseases, and facilitate the broad application of medical engineering in a DL model design.

原文English
文章編號7130
期刊Scientific reports
11
發行號1
DOIs
出版狀態Published - 12月 2021

指紋

深入研究「Deep learning and ensemble stacking technique for differentiating polypoidal choroidal vasculopathy from neovascular age-related macular degeneration」主題。共同形成了獨特的指紋。

引用此