Deep Incremental Optical Flow Coding for Learned Video Compression

Chih Peng Chang, Peng Yu Chen, Yung Han Ho, Wen Hsiao Peng

研究成果: Conference contribution同行評審

摘要

This work addresses motion coding in end-to-end learned video compression. The efficiency of motion coding is critical at low bit rates, at which a large portion of the bitstream signals motion information. Most end-to-end learned video codecs adopt an intra-coding approach to coding motion information as individual optical flow maps. Some recent studies introduce predictive motion coding to encode optical flow map residuals. Still, motion coding remains an active research area for learned video compression. We present an incremental optical flow coding scheme. It first leverages an extrapolated flow together with the reference frame in estimating an incremental flow between the reference and the target frames for efficient motion coding. It then derives the final flow map for motion compensation by integrating the incremental and the extrapolated flows in a double-warping
scheme. Experimental results on commonly used datasets
show the superiority of our method over predictive motion
coding and other advanced schemes.
原文English
主出版物標題2022 IEEE International Conference on Image Processing, ICIP 2022 - Proceedings
發行者IEEE Computer Society
頁面3988-3992
頁數5
ISBN(電子)9781665496209
DOIs
出版狀態Published - 2022
事件2022 IEEE International Conference on Image Processing (ICIP) - Bordeaux, France , Bordeaux, France
持續時間: 16 10月 202219 10月 2022

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
ISSN(列印)1522-4880

Conference

Conference2022 IEEE International Conference on Image Processing (ICIP)
國家/地區France
城市Bordeaux
期間16/10/2219/10/22

指紋

深入研究「Deep Incremental Optical Flow Coding for Learned Video Compression」主題。共同形成了獨特的指紋。

引用此