TY - CONF
T1 - Cycle-accurate NoC-based convolutional neural network simulator
AU - Chen, Kun Chih
AU - Wang, Ting Yi
AU - Yang, Yueh Chi
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019
Y1 - 2019
N2 - Due to the development of intelligent systems, convolutional neural network (CNN) have been applied and achieved outstanding performance in many aspects, such as patent recognition and object classification. Although CNN brings many advantages to several AI applications, the longer computing time and the larger computing power still restrict the system performance significantly. Therefore, the hardware-efficient CNN accelerator design receives much attention in recent years. However, because of the intensively complicated computation and communication among the CNN operation, the interconnection between each CNN computing unit becomes complicated as the CNN size is scaling up. On the other hand, the Network-on-chip (NoC) interconnection has been proposed to solve the complex communication problem, which is an attractive interconnection to construct the hardware-efficient CNN design. To evaluate the NoC-based CNN design in the system level, we present a cycle-accurate NoC-based convolutional neural network simulator, CNN-Noxim, in this paper. The proposed CNNNoxim can simulate the CNN models and the classification precision of the simulation output is verified by Keras. Consequently, the proposed NoC-based CNN simulator is a high flexible neural network simulator, which facilitates the evaluation of the NoC-based convolutional neural network design.
AB - Due to the development of intelligent systems, convolutional neural network (CNN) have been applied and achieved outstanding performance in many aspects, such as patent recognition and object classification. Although CNN brings many advantages to several AI applications, the longer computing time and the larger computing power still restrict the system performance significantly. Therefore, the hardware-efficient CNN accelerator design receives much attention in recent years. However, because of the intensively complicated computation and communication among the CNN operation, the interconnection between each CNN computing unit becomes complicated as the CNN size is scaling up. On the other hand, the Network-on-chip (NoC) interconnection has been proposed to solve the complex communication problem, which is an attractive interconnection to construct the hardware-efficient CNN design. To evaluate the NoC-based CNN design in the system level, we present a cycle-accurate NoC-based convolutional neural network simulator, CNN-Noxim, in this paper. The proposed CNNNoxim can simulate the CNN models and the classification precision of the simulation output is verified by Keras. Consequently, the proposed NoC-based CNN simulator is a high flexible neural network simulator, which facilitates the evaluation of the NoC-based convolutional neural network design.
KW - Network-on-Chip
KW - Neural network
KW - Neural network simulator
KW - NoC
KW - NoC-based neural network
UR - http://www.scopus.com/inward/record.url?scp=85066810781&partnerID=8YFLogxK
U2 - 10.1145/3312614.3312655
DO - 10.1145/3312614.3312655
M3 - Paper
AN - SCOPUS:85066810781
SP - 199
EP - 204
T2 - 2019 International Conference Omni-Layer Intelligent Systems, COINS 2019
Y2 - 5 May 2019 through 7 May 2019
ER -