TY - JOUR
T1 - Curcumin, demethoxycurcumin, and bisdemethoxycurcumin induced caspase-dependent and -independent apoptosis via Smad or Akt signaling pathways in HOS cells
AU - Huang, Cheng
AU - Lu, Hsu Feng
AU - Chen, Yu Hsuan
AU - Chen, Jui Chieh
AU - Chou, Wen Hsiang
AU - Huang, Hsiu Chen
PY - 2020/3/3
Y1 - 2020/3/3
N2 - BACKGROUND: Osteosarcoma is the most common primary malignant bone tumor in children and adolescents and has also been associated with a high degree of malignancy and enhanced metastatic capacity. Curcumin (CUR) is well known for its anti-osteosarcoma activity. However, both demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are natural curcumin analogues/congeners from turmeric whose role in osteosarcoma development remains unknown. METHODS: To evaluate the growth inhibitory effects of CUR, DMC and BDMC on osteosarcoma (HOS and U2OS), breast (MDA-MB-231), and melanoma (A2058) cancer cells, we employed the MTT assay, annexin V-FITC /7-AAD staining, and clonogenic assay. RESULTS: CUR,DMC, and BDMC all decreased the viability of HOS, U2OS, MDA-MB-231, and A2058 cancer cells. Additionally, CUR,DMC, and BDMC induced the apoptosis of HOS cells through activation of Smad 2/3 or repression of Akt signaling pathway. Furthermore, the combination of CUR,DMC, and BDMC synergistically reduced cell viability, colony formation and increased apoptosis than either two or a single agent in HOS cells. CONCLUSIONS: The combination of these three compounds could be used as a novel target for the treatment of osteosarcoma.
AB - BACKGROUND: Osteosarcoma is the most common primary malignant bone tumor in children and adolescents and has also been associated with a high degree of malignancy and enhanced metastatic capacity. Curcumin (CUR) is well known for its anti-osteosarcoma activity. However, both demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are natural curcumin analogues/congeners from turmeric whose role in osteosarcoma development remains unknown. METHODS: To evaluate the growth inhibitory effects of CUR, DMC and BDMC on osteosarcoma (HOS and U2OS), breast (MDA-MB-231), and melanoma (A2058) cancer cells, we employed the MTT assay, annexin V-FITC /7-AAD staining, and clonogenic assay. RESULTS: CUR,DMC, and BDMC all decreased the viability of HOS, U2OS, MDA-MB-231, and A2058 cancer cells. Additionally, CUR,DMC, and BDMC induced the apoptosis of HOS cells through activation of Smad 2/3 or repression of Akt signaling pathway. Furthermore, the combination of CUR,DMC, and BDMC synergistically reduced cell viability, colony formation and increased apoptosis than either two or a single agent in HOS cells. CONCLUSIONS: The combination of these three compounds could be used as a novel target for the treatment of osteosarcoma.
KW - Apoptosis
KW - Bisdemethoxycurcumin
KW - Curcumin
KW - Demethoxycurcumin
KW - Osteosarcoma
UR - http://www.scopus.com/inward/record.url?scp=85090320330&partnerID=8YFLogxK
U2 - 10.1186/s12906-020-2857-1
DO - 10.1186/s12906-020-2857-1
M3 - Article
C2 - 32126993
AN - SCOPUS:85090320330
SN - 1472-6882
VL - 20
SP - 68
JO - BMC Complementary Medicine and Therapies
JF - BMC Complementary Medicine and Therapies
IS - 1
ER -